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Abstract 8 

Hydrologic modeling is one of the primary tools utilized for drought monitoring and drought 9 

early warning systems. Several sources of uncertainty in hydrologic modeling have been 10 

addressed in the literature. However, few studies have assessed the uncertainty of gridded 11 

observation datasets from a drought monitoring perspective. This study provides a hydrologic 12 

modeling oriented analysis of the gridded observation data uncertainties over the Pacific 13 

Northwest (PNW) and its implications on drought assessment. We utilized a recently developed 14 

100-member ensemble-based observed forcing data to simulate hydrologic fluxes at 1/8° spatial 15 

resolution using Variable Infiltration Capacity (VIC) model, and compared the results with a 16 

deterministic observation. Meteorological and hydrological droughts are studied at multiple 17 

timescales over the basin, and seasonal long-term trends and variations of drought extent is 18 

investigated for each case. Results reveal large uncertainty of observed datasets at monthly 19 

timescale, with systematic differences for temperature records, mainly due to different lapse 20 

rates. The uncertainty eventuates in large disparities of drought characteristics. In general, an 21 

increasing trend is found for winter drought extent across the PNW. Furthermore, a ~3% 22 

decrease per decade is detected for snow water equivalent (SWE) over the PNW, with the region 23 

being more susceptible to SWE variations of the northern Rockies than the western Cascades. 24 

The agricultural areas of southern Idaho demonstrate decreasing trend of natural soil moisture as 25 

a result of precipitation decline, which implies higher appeal for anthropogenic water storage and 26 

irrigation systems. 27 

 28 
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1. Introduction 31 

Drought, defined as an extended period of moisture deficiency in the land surface, is among the 32 

costliest natural hazards with profound socioeconomic impacts (Dai, 2011; Livneh and Hoerling, 33 

2016; Yan et al., 2016). Therefore, drought monitoring and drought early warning systems are 34 

crucial for water resources management and mitigating the impacts of droughts (Ahmadalipour 35 

et al., 2017c; Otkin et al., 2014; Pozzi et al., 2013). 36 

Notwithstanding the severe economic, social, and ecological impacts of drought, it is among the 37 

least understood natural hazards due to the complexity and diversity in drought origins, obscure 38 

mechanisms for drought development and recovery, and multiscale (temporal and spatial) 39 

advancement and demise of drought (Hobbins et al., 2016; Kam et al., 2014; Vicente-Serrano et 40 

al., 2015; Wang et al., 2016). Furthermore, it is reported that the anthropogenic warming and 41 

climate change will alter the hydro-meteorological patterns and seasonal hydrologic cycles, 42 

consequently affecting drought characteristics (Ahmadalipour et al., 2016; Diffenbaugh et al., 43 

2015; Duffy et al., 2015; Mishra and Coulibaly, 2009). 44 

During the past decade, land surface modeling of hydrological cycle has received profound 45 

attention for drought monitoring purposes (Mishra and Singh, 2011; Svoboda et al., 2002; Xia et 46 

al., 2012). However, the existence of several sources of uncertainty makes the monitoring and 47 

prediction of drought a challenging process. Focusing on the epistemic uncertainties, several 48 

components contribute to the uncertainty in hydrologic modeling. Various studies have assessed 49 

some of these sources of uncertainty from a modeling perspective; such as model 50 

parameterization and calibration (Brigode et al., 2013), initial conditions (Abaza et al., 2014; 51 

Yan et al., 2017), model structure (Cai et al., 2014; Najafi et al., 2011; Najafi and Moradkhani, 52 

2015; Samaniego et al., 2016), or a combination of the above (Bennett et al., 2012; Mendoza et 53 
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al., 2015; Mizukami et al., 2016). Some other studies have pointed out the uncertainty raised due 54 

to forcing uncertainty for medium-range seasonal forecasts (Mo and Lyon, 2015; Shukla et al., 55 

2016) to long-term decadal projections (Ahmadalipour et al., 2017a, 2016; Zhao and Dai, 2015). 56 

Moreover, the impacts of bias correction and downscaling methods on hydro-climatological 57 

portrayals have also been assessed (Ahmadalipour et al., 2017b; Ficklin et al., 2016; Gutmann et 58 

al., 2014). 59 

In addition to the uncertainties of hydrologic modeling, drought monitoring can be challenging 60 

due to the differences among drought indices and timescales. Various drought indices consider 61 

different variables and therefore, there is a discrepancy between the onset and intensity of 62 

drought from different indices (Anderson et al., 2013; McEvoy et al., 2016). It is also worth 63 

noting that drought does not always have the same origin and reason, making the detection of 64 

drought onset and termination (recovery) more intricate. For instance, for the case of 65 

hydrological drought, a drought event may be classified as a rain-to-snow-season drought, 66 

cold/warm snow season drought, or snowmelt drought, as explained by Van Loon (2015).  67 

Although Pacific Northwest (PNW) US is known for its abundant water, it has suffered severe 68 

droughts with significant socioeconomic impacts (Shukla et al., 2011). A few studies have 69 

assessed historical drought characteristics over the PNW to understand the causes of drought and 70 

its relationship with atmospheric teleconnections, and to improve drought predictability 71 

(Abatzoglou et al., 2014; Cooper et al., 2016; Yan et al., 2017). Some other studies have assessed 72 

future drought projections in the region (Ahmadalipour et al., 2017a). Recently, Xiao et al. 73 

(2016) utilized Variable Infiltration Capacity (VIC) model for the period of 1920-2013 to study 74 

drought over the PNW based on the total soil moisture variability. 75 
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The current study conducts a land surface modeling to analyze the patterns of drought over the 76 

Pacific Northwest using different observational datasets in order to diagnose the effects of 77 

observational choice on hydro-meteorological portrayals and drought. Our analysis benefits from 78 

the availability of a fine-resolution ensemble-based observational dataset of meteorological 79 

forcing. Meteorological and hydrological droughts are studied using drought indices at various 80 

timescales as well as the actual net moisture acquired from the land surface model outputs. 81 

2. Study Area and Data 82 

The study is conducted over the Pacific Northwest (PNW) US which covers the Columbia River 83 

Basin as well as the western coastal drainages. It is among the largest river basins in the US, 84 

covering portions of seven states in the western US (Washington, Oregon, Idaho, Montana, 85 

Wyoming, Nevada, and Utah) and parts of British Columbia in western Canada. Diverse climate 86 

and complex terrain is found across the basin, from low valley moist coastal regions at the 87 

western parts receiving annual precipitation of more than 2000 mm to semi-arid areas at the 88 

southeastern parts of the basin with less than 400 mm annual precipitation. 89 

In general, the gridded observation datasets are generated by interpolating data from various 90 

gauge observations and accounting for elevation variations, lapse rate, etc. Thus, the gridded 91 

observation datasets can be affected by the following factors: 92 

• The gauge stations that are included 93 

• The interpolation technique 94 

• The elevation chosen for each grid 95 

• The temperature lapse rate 96 
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• The start and end time of the day (00UTC or local time) 97 

Therefore, various gridded observations are different from each other as they do not necessarily 98 

employ similar methodology. In general, the deterministic gridded observations assign a single 99 

value to each grid, which would represent the majority of that grid. However, this may be 100 

impractical for the areas with diverse topography and regions subject to orographic effects. 101 

Therefore, the application of ensemble observation datasets would be useful for characterizing 102 

such uncertainty. 103 

The gridded ensemble precipitation and temperature at 1/8° spatial resolution is utilized at a daily 104 

temporal resolution. The dataset has been developed by Newman et al. (2015) (hereafter 105 

represented by “N15”) which consists of 100 ensemble members of daily precipitation, mean 106 

temperature, and daily temperature range covering the historical period of 1980-2012. Various 107 

gauge observations and different probabilistic interpolation techniques were employed for 108 

developing the dataset. 109 

Besides the ensemble observation, deterministic gridded observational dataset developed by 110 

Livneh et al. (2013) (hereafter represented by “L13”) is also utilized. L13 dataset has a spatial 111 

resolution of 1/16° (~6km in the north-south direction) and covers the historical period of 1915-112 

2011. It consists of daily precipitation, maximum and minimum near surface air temperature, and 113 

wind speed, all of which are required to run the VIC model. 114 

Since N15 dataset does not provide data for wind speed, the wind data from L13 dataset is 115 

utilized for running VIC model for all cases. Furthermore, in order to objectively assess the 116 

uncertainty of observational data on hydrological fluxes, the L13 dataset is aggregated to 1/8° to 117 

match the spatial resolution of N15 data. In this study, we have used all the available daily data 118 
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from N15 dataset (100 ensemble members and the ensemble mean for the period of 1980-2012) 119 

as well as daily L13 dataset for the period of 1950-2011. A summary of the gridded observation 120 

datasets is provided in Table 1. 121 

----------------------- 122 

Table 1. Summary of the characteristics of the gridded observation datasets utilized in this study; 123 

modified from Newman et al. (2015) and Henn et al. (2017). 124 

----------------------- 125 

3. Methodology 126 

3.1. Hydrologic model 127 

The Variable Infiltration Capacity (VIC) model is a physically-based semi-distributed 128 

macroscale hydrologic model (Liang et al., 1994). The land surface is modeled as uniform grids 129 

and the model parameterizes sub-grid variability of vegetation, land cover, and soil. VIC model 130 

has been successfully applied in numerous studies across the globe (Prudhomme et al., 2014; 131 

Shukla et al., 2013; Yuan et al., 2015) and over the PNW for hydrologic simulations and drought 132 

analysis (Najafi and Moradkhani, 2015; Xiao et al., 2016). 133 

Here, we have used VIC model, version 4.2.c, with three soil layers at a daily time step and 1/8° 134 

spatial resolution to reconstruct historical hydrological fluxes over the PNW. A total of 6392 135 

grids cover the study area at 1/8° spatial resolution. The model parameter files including soil 136 

properties, vegetation cover, and elevation are acquired from the VIC retrospective land surface 137 

dataset developed by Maurer et al. (2002). They performed a comprehensive 138 

calibration/validation of the model over the Conterminous United States, showed that the 139 

calibrated model performed accurately for streamflow and soil moisture simulations. In this 140 
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study, VIC model was run in water balance mode for each of the 100 ensemble members as well 141 

as the ensemble mean of N15 dataset for the period of 1980-2012. The model was also 142 

implemented for the L13 forcing for the period of 1950-2011. Surface runoff, snow water 143 

equivalent (SWE), evapotranspiration, and three layers of soil moisture were extracted from the 144 

model outputs. 145 

3.2. Drought analysis 146 

The Standardized Precipitation Index (SPI) (Mckee et al., 1993) and the Standardized Runoff 147 

Index (SRI) (Shukla and Wood, 2008) were utilized to study meteorological and hydrological 148 

droughts, respectively. Both drought indices were calculated at two timescales of 3- and 6-month 149 

accumulation periods to better reflect intra-annual attributes of hydrologic cycle. The conventional 150 

distribution fitting procedures i.e., Gamma and Lognormal distributions which were used to fit to the 151 

precipitation data, are known to have few issues. For instance, the calculated drought index was subject to 152 

the choice of distribution. Moreover, the most suitable distribution could vary for different locations. The 153 

drought index calculated using parametric distributions is unbounded and it can result in very high and 154 

low values, which can impact long-term trends. Therefore, a non-parametric procedure is 155 

implemented in this study to calculate drought indices. In order to calculate the indices, 156 

precipitation and runoff of each grid were accumulated to the desired accumulation period, and 157 

the empirical Weibull plotting position (Weibull, 1939) was utilized (as a non-parametric 158 

approach which eliminates the parametric distribution selection and fitting procedure) as follows: 159 

����� =
�

� + 1
 160 

where n is the sample size, i represents the rank of accumulated precipitation or runoff from the 161 

smallest, and ����� is the empirical probability. ����� is then transformed to a standardized 162 
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normal distribution (with mean zero and unit standard deviation) to obtain the drought index. For 163 

each index and each timescale, drought extent in each month was calculated as the percentage of 164 

area having a drought index below -0.8, indicating moderate to extreme drought condition. 165 

4. Results and Discussion 166 

4.1. Hydro-meteorological fluxes 167 

The first part of our analysis focuses on comparing the hydro-meteorological fluxes of 168 

deterministic L13 observation with the outputs of the ensemble of N15 dataset. This is performed 169 

at various temporal resolutions (i.e. monthly, seasonal and annual) to better address the 170 

differences and uncertainties. Figure 1 shows the spatial mean annual precipitation (Prec), mean 171 

air temperature (TMean), runoff, and evapotranspiration (Evap) over the PNW for the period of 172 

1980-2012. The precipitation (Prec.) and mean temperature (TMean) are directly extracted from 173 

the gridded observation datasets. They are used as input to the VIC model in order to generate 174 

runoff and evapotranspiration, and these two variables are plotted in the bottom two plots. The 175 

light blue plots present 100 members of the N15 data and the bold dark blue line indicates the 176 

results for the ensemble mean of N15 dataset. As it can be seen, N15 indicates higher 177 

precipitation and temperature than those from L13. The difference in temperature is more 178 

pronounced as all the ensemble members of N15 show about 0.5°C warmer air temperature than 179 

that of L13 observations. Having higher temperature and precipitation, N15 indicates about 180 

50mm higher annual average evapotranspiration than L13 simulations. Nevertheless, datasets are 181 

more in agreement for annual mean runoff. In other words, L13 and the ensemble mean of N15 182 

(shown in bold blue line) show similar annual runoff. The highest and lowest annual 183 

precipitation over the PNW are found in 1996 (~1200mm) and 1985 (~700mm), respectively. 184 
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Also, the lowest annual temperature is recorded in1985, and 1996 indicates the highest average 185 

runoff due to abundant precipitation. 186 

----------------------- 187 

Figure 1. Spatial mean annual precipitation, mean air temperature, runoff, and 188 

evapotranspiration over the Pacific Northwest for the period of 1980-2012. 189 

----------------------- 190 

The seasonal long-term mean of the hydro-meteorological variables are calculated for the period 191 

of 1980-2011, and the results are shown in Figure 2. The figure shows the long-term seasonal 192 

mean of climate variables in winter (JFM) and summer (JAS) for L13 and the ensemble mean of 193 

N15 dataset. From Figure 2, the highest precipitation in JFM and JAS are found at the western 194 

and northern parts of PNW, respectively. Similar seasonal spatial pattern is found for runoff. The 195 

warmest regions in winter (JFM) seems to be the western coastal areas, whereas eastern 196 

Washington and low valleys of southern Idaho indicate the highest temperatures in summer 197 

(JAS). The spatial pattern of evapotranspiration shows dependence on both temperature and 198 

runoff.  For instance, the low valleys of southern Idaho indicates the lowest evapotranspiration in 199 

JAS due to limited water availability. Evapotranspiration of JFM seems to have similar spatial 200 

distribution as runoff with the highest values at western coastal areas. Therefore, southern Idaho 201 

and central parts of PNW (eastern parts of Oregon and Washington) are water-limited, whereas 202 

western coastal regions are energy-limited (Milly and Dunne, 2002; Najafi et al., 2011). 203 

----------------------- 204 

Figure 2. Long-term seasonal mean of hydro-meteorological variables for the period of 1980-205 

2011. 206 
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----------------------- 207 

Although both datasets seem to have similar spatial patterns for long-term mean condition, the 208 

differences are not clear from Figure 2. Therefore, results of both datasets are plotted against 209 

each other using scatterplots and shown in Figure S1. The figure shows that the long-term 210 

seasonal mean temperature of N15 exceeds L13 dataset by about 2°C in some grids. 211 

Furthermore, JFM evapotranspiration of N15 is higher than L13 in almost all grids. For long-212 

term average runoff, N15 indicates higher runoff than L13 in JFM, and vice versa for JAS. 213 

Figures 1 and 2 represented annual and seasonal spatial and temporal mean of hydro-214 

meteorological variables, respectively. Besides the mean condition, it is also important to 215 

understand the differences for extreme conditions. Therefore, the 90th percentile of each variable 216 

during the period of 1980-2011 is extracted for each month for L13 as well as each ensemble 217 

member of N15 dataset, and the results are shown in Figure 3. The uncertainty of observation 218 

datasets is more noticeable in monthly extremes, and diverse patterns are found among different 219 

months. For instance, comparing N15 and L13 datasets, the former shows higher extreme 220 

precipitation and temperature in JFM, while it indicates lower values than L13 in spring and 221 

summer (MMJJAS). This seasonal pattern is similarly replicated in runoff with higher 222 

uncertainty for the N15 ensemble. The 90th percentile values of evapotranspiration (/SWE) for 223 

N15 is always higher (/lower) than the L13 results. For soil moisture (SM), N15 shows higher 224 

SM values than L13 in the first four months of the year (JFMA) and stays lower than L13 for rest 225 

of the months. 226 

----------------------- 227 
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Figure 3. Monthly 90th percentile values of each hydroclimatic variable from N15 (blue) and 228 

L13 data (red) for the period of 1980-2011. 229 

----------------------- 230 

Due to the significant role of SWE in hydrological processes (especially for spring runoff and 231 

soil moisture), simulations of SWE from the VIC model are analyzed separately and the results 232 

are shown in Figure 4. The top rows of Figure 4 represent the long-term seasonal mean SWE 233 

from N15 and L13 datasets for the period of 1982-2011, and the bottom plot indicates annual 234 

mean SWE over PNW. Two main SWE resources in PNW are the Rocky Mountains and 235 

Cascades located in east and west sides of the PNW, respectively. Considering the bottom plot, 236 

L13 indicates higher SWE than N15. Furthermore, focusing on long-term trend of annual SWE 237 

from L13 simulations, a significant linear trend of -40mm/decade (about -3% of annual mean 238 

SWE) is found for spatial mean SWE over the PNW for the period of 1950-2011. 239 

----------------------- 240 

Figure 4. (top) Long-term seasonal mean SWE for the period of 1982-2011; (bottom) spatial 241 

mean annual SWE over the basin for each dataset. 242 

----------------------- 243 

Decreasing SWE may have substantial impacts on spring runoff and soil moisture, which may 244 

lead to intensified drought conditions (Safeeq et al., 2014). Previous studies have investigated the 245 

decreasing trend of SWE and snow cover in western US (Kapnick and Hall, 2012; Mote et al., 246 

2016) and Sierra Nevada (Margulis et al., 2016; Rittger et al., 2016). It has been shown that 247 

anthropogenic warming and earlier spring onset have considerable role on the decreasing trend 248 

of SWE (Pierce and Cayan, 2013). 249 
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In order to better understand the regional trends of SWE, its monthly variations and long-term 250 

trends are analyzed for the western Cascades, northern Rockies, and the entire PNW for the 251 

period of 1950-2011 using L13 simulations. Results of the long-term trends of SWE are shown 252 

in Figure 5. In the figure, the left plots show monthly spatial mean SWE from L13 simulations. 253 

The long-term linear trends are calculated for winter and spring (DJFMAM) and the percentage 254 

change of SWE per decade is shown in the right bar plots. In most cases, monthly SWE indicates 255 

about -2% decrease per decade. Considering western Cascades, SWE indicates decreasing 256 

pattern for all months. Whereas, the Northern Rockies and PNW indicate slightly increasing 257 

SWE in December and January. From the left plots, it can be seen that the early 1970s 258 

experienced abundant SWE (especially in Cascades), followed by about two decades of lower 259 

SWE records. Considering monthly variations and long-term trends, PNW seems to be more 260 

sensitive to SWE variations in Northern Rockies than western Cascades. This is confirmed when 261 

considering the below-normal state of SWE between 2009-2011 for both PNW and Northern 262 

Rockies, while the Cascades shows normal SWE conditions in the same period. 263 

----------------------- 264 

Figure 5. (left) Monthly SWE (mm) from L13 dataset for the period of 1950-2011; (right) long-265 

term linear trend of monthly SWE presented as the percentage change per decade. 266 

----------------------- 267 

The last hydrologic comparison between L13 and N15 observations is conducted on monthly 268 

simulations of each variable, and the results are shown in Figure 6 using density-type 269 

scatterplots. Figure 6 presents a comparison of monthly simulations of L13 and the ensemble 270 

mean of N15 for each grid during the 30-year historical period of 1982-2011. Each plot is 271 
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generated using more than 2.3×106 data records (6392grids × 30years × 12months). The results 272 

of previous analysis are confirmed here with higher temperature and evapotranspiration and 273 

lower SWE of N15 than L13. Figure 6 illustrates the discrepancy between the observation 274 

datasets at monthly timescale (suitable for drought assessment), which would be worse at finer 275 

temporal resolutions such as daily timescale (suitable for heatwave or flood analysis). For 276 

instance, N15 shows more than 5°C higher temperature than L13 in low temperatures, whereas 277 

datasets seem to be more in agreement at high temperatures. Although spatial mean annual 278 

runoff of N15 and L13 (presented in Figure 1) were similar to each other, monthly runoff shows 279 

vast differences at grid-scale comparison. 280 

----------------------- 281 

Figure 6. Density-type scatterplots of monthly simulations of L13 and N15 observations for 30-282 

year period of 1982-2011. In the plots, each axis is divided into 100 bins and the number of 283 

occurrences in each 2D bin is indicated by the colorbar. 284 

----------------------- 285 

4.2. Drought simulation 286 

The SPI and SRI are calculated at 3- and 6-month accumulation periods starting at each month 287 

and for each grid in the PNW. This is carried out for L13 data for the period of 1950-2011 and 288 

for each of the 100 ensemble members as well as the ensemble mean of N15 dataset for the 289 

period of 1980-2012. Drought extent is calculated for each month and the average drought extent 290 

of PNW in each season (JFM, AMJ, JAS, and OND) is plotted in Figures 7 and S2 for 6- and 3-291 

month accumulation periods, respectively. Drought extent of both timescales seem to follow 292 

similar patterns for each season. However, the figures show large differences between the L13 293 
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and N15 simulations. Among the four seasons, the N15 and L13 simulations seem to be more 294 

similar in spring and summer, especially for SPI-3 in AMJ. 295 

----------------------- 296 

Figure 7. Time series of mean seasonal drought extent of PNW at 6-month accumulation period 297 

for L13 and N15 simulations. 298 

----------------------- 299 

The decreasing SWE during 1970s and 1980s has clearly affected the drought extent of that 300 

period. This can be seen in the substantial increase of summer (JAS) drought extent (shown in 301 

Figures 7 and S2). Recently, Ahmadalipour et al. (2017a) investigated the impacts of climate 302 

change on the meteorological and hydrological droughts of the Willamette Basin, located at the 303 

western parts of the Pacific Northwest. They concluded that the earlier snowmelt onset and lower 304 

snowpack accumulation (both affected by climate change) will significantly affect streamflow 305 

and drought characteristics, especially in distant future. 306 

To better understand the role of observational uncertainty on drought, the long-term cumulative 307 

distribution function (CDF) of each drought extent time-series is generated for the period of 308 

1981-2011 for L13 and N15 simulations, and the results are plotted in Figure 8 for each case. 309 

From the figure, L13 shows higher drought extent than N15 in JFM and OND for all cases. For 310 

instance, the median of L13 drought extent in OND is about 10% higher than that for N15 311 

simulations. The differences are lower in spring and summer. Focusing on the median of drought 312 

extent CDFs and comparing different seasons, the lowest drought extent in PNW happens in 313 

spring (AMJ) with about 16% of PNW experiencing drought. 314 

----------------------- 315 



16 

 

Figure 8. Long-term CDF of drought extent in PNW for each season and each drought index 316 

during the period of 1981-2011. 317 

----------------------- 318 

In order to assess the long-term changes of drought extent over PNW, the linear trend of drought 319 

extent is calculated for each index in each season, and the results are plotted in Figure 9. The 320 

trend of L13 drought extent is calculated once for 1951-2011 to reveal 60-year long-term trends 321 

and once for 1981-2011 to be compared with N15 results. For the period of 1981-2011, both L13 322 

and N15 indicate increasing drought extent in AMJ and JFM for most cases. However, L13 323 

shows decreasing drought extent in AMJ for the longer period (1951-2011). In general, L13 324 

indicates the largest (both negative and positive) trend values for drought extent. SRI-3 shows 325 

increasing drought extent in most seasons among all cases. The decadal trend of 2% increase in 326 

drought extent is significant in the region. For instance, the JFM drought extent in 1980s was 327 

about 15%, and the same in 2000s is above 25%. Considering the ~900,000 km2 area of the 328 

region, the affected area by drought has increased more than 90,000 km2 in the past decades. 329 

----------------------- 330 

Figure 9. Linear trend of drought extent in each season presented as the percentage change per 331 

decade. 332 

----------------------- 333 

Among the regions in PNW, the low valleys of southern Idaho (eastern parts of southern Snake 334 

River Basin) is covered with agricultural areas and farmlands. The region receives low 335 

precipitation and high temperature. Hydrological characteristics of this region is exclusively 336 

investigated in order to diagnose the impacts of hydrological changes on agriculture. Therefore, 337 
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apart from drought indices and drought extent, the variation of actual net moisture is studied for 338 

low valleys of southern Idaho as a means to provide a physical representation for moisture 339 

availability. We define net moisture as the sum of incoming moisture (precipitation, soil 340 

moisture, and SWE) minus evapotranspiration, as follows: 341 

��
 ����
��� = ���� + �� + ��� − ����  342 

Since the region receives low SWE, the main incoming moisture would be precipitation and soil 343 

moisture. Here, the variability of net moisture is studied during the growing season (MJJAS) and 344 

the results are provided in Figure 10. The figure shows spatial mean net moisture and its main 345 

input components (i.e. Prec. and SM) for the period of 1982-2011 for both L13 and the ensemble 346 

mean of N15 simulations. From the top panel of Figure 10, L13 indicates higher net moisture 347 

than N15, mainly because the latter possesses higher evapotranspiration. Both datasets exhibit 348 

decreasing trends of about 7% per decade for the net moisture. Considering the bottom plot, 349 

decreasing trend is found for both precipitation and top layer soil-moisture (which is crucial for 350 

vegetation health and agricultural yield). A decreasing trend in soil moisture implies higher 351 

demand for anthropogenic water storage and irrigation systems. The decreasing moisture trend 352 

would also impose damages to vegetation. Recently, Ahmadalipour et al. (2017c) utilized 353 

Vegetation Health Index (VHI) (Kogan, 1995) calculated from remotely sensed observations of 354 

Advanced Very High Resolution Radiometer (AVHRR) satellite at a weekly timescale during the 355 

growing season  over the contiguous United States (CONUS) for the period of 1982-2015. Their 356 

results also confirm the aggravating drought and exacerbating vegetation health condition for the 357 

region. 358 

----------------------- 359 
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Figure 10. Variability of net moisture (top) and its input components (bottom) over the 360 

agricultural areas of southern Idaho during the growing season (MJJAS) for the period of 1982-361 

2011. 362 

----------------------- 363 

From Figure 10, the temporal variations of precipitation and top layer soil moisture during the 364 

growing season follow very similar patterns, and a correlation coefficient of 0.96 is found 365 

between them. Considering the underlying land-atmosphere feedbacks and the attributable 366 

impacts of soil moisture on aridity and temperature extremes (Berg et al., 2016; Whan et al., 367 

2015), the decreasing soil moisture pattern not only poses drought  and harmful effect on 368 

vegetation health, it also alters the hydrological processes and water cycle dynamics (Mishra et 369 

al., 2017; Schwingshackl et al., 2017). Understanding the feedbacks and inter-relationships of 370 

hydro-meteorological variables and fluxes has received more attention in recent years, especially 371 

given the availability of more accurate global satellite observations (McColl et al., 2017; Whan 372 

et al., 2015). 373 

This study revealed the importance of considering observation uncertainty for assessing 374 

hydrological fluxes and drought monitoring purposes. Although some of the previous studies 375 

have investigated the meteorological differences among observed datasets (Henn et al., 2017; 376 

Lundquist et al., 2015; Newman et al., 2015), few studies addressed the consequences of such 377 

disparities on drought modeling (Trenberth et al., 2014).  378 

Assessing the long-term variations and trends of the hydrological variables indicates a distinct 379 

changing pattern. It has been shown that the increase in temperature has crucial implications on 380 

different variables such as snow water equivalent, evapotranspiration, and soil moisture, among 381 
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others (Gergel et al., 2017; Sima et al., 2013). The changes of hydro-meteorological variables are 382 

reflected in drought characteristics, while altering intensity, severity and impacts of droughts. 383 

For instance, the idea of “snow drought” which refers to the reduced snow accumulation hence 384 

drought, has recently received extensive attention, especially after the unprecedented 2011-2016 385 

California drought (Cooper et al., 2016; Harpold et al., 2017). 386 

Besides the areal extent of drought, which was elaborated in this study, other drought 387 

characteristics (e.g. intensity, duration, and frequency) have been assessed in many other studies 388 

across the globe, and it has been discussed that droughts have been exacerbated in many regions 389 

(Chen and Sun, 2017; Dai and Zhao, 2016; Zhai et al., 2017). The results of this study revealed 390 

distinct long-term patterns among different seasons for SWE and drought extent. Diverse 391 

seasonal patterns were detected for different seasons, highlighting the necessity of seasonal 392 

analysis for similar assessments. 393 

The observational datasets are utilized as the basis for various applications such as evaluating, 394 

bias correction, and statistical downscaling of climate models, or improving the accuracy and 395 

reliability of hydrologic forecasts through post-processing methods (Ahmadalipour et al., 2015; 396 

Khajehei and Moradkhani, 2017; Robertson et al., 2013). Thus, the observation uncertainty may 397 

affect such processes, and it should be investigated with more attention for these applications, 398 

especially for micro- to meso-scale extreme events of shorter timescales. One of the main points 399 

of this study was to show how minor differences in daily precipitation and temperature of 400 

gridded observation datasets can yield to disparities for other hydrologic variables (e.g. SWE or 401 

ET) and drought. 402 

The results also showed that the forcing data uncertainty is different across timescales and it 403 

increases as the timescale becomes shorter. In other words, the observation uncertainty is 404 
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expected to be lower at annual timescale compared to seasonal and monthly timescales. 405 

Therefore, the implications of observation uncertainty would be different for different 406 

phenomena including aridity, drought, medium-range hydrologic forecast, and flood, possessing 407 

long to short timescales, respectively. Results of this study showed that observation uncertainty 408 

is large in most regions of PNW, especially in wet coastal regions. Therefore, it is necessary to 409 

consider such uncertainties for analyzing long-term changes or short-term hydrological 410 

monitoring and forecast. 411 

Droughts impose about $6-8 billion damage in the United States each year (Smith and Matthews, 412 

2015). The impacts are not only economical, rather the environmental and ecological impacts are 413 

more severe (Crausbay et al., 2017). Droughts can also increase the risk of wildfires, which is a 414 

serious issue for the densely vegetated areas of the Pacific Northwest US (Gudmundsson et al., 415 

2014).  Therefore, drought monitoring and prediction systems are vital for mitigating such 416 

impacts and for subsiding its social and ecological consequences. Understanding and 417 

characterizing different sources of uncertainty in drought monitoring systems will help improve 418 

the accuracy of drought onset and recovery detection (Yan et al., 2017).  419 

5. Summary and Conclusion 420 

This study provided an assessment of hydro-meteorological fluxes and historical droughts over 421 

the PNW. We employed VIC model at 1/8° spatial resolution for a 100-member ensemble of 422 

observed forcing data (N15) during the period of 1980-2012 as well as a deterministic 423 

observation (L13) for the period of 1950-2011, and compared the model outputs at various 424 

timescales for different variables. Meteorological and hydrological droughts were investigated 425 

using SPI and SRI, respectively, and drought extent was assessed for each case. The main 426 

findings of our study are summarized as follows: 427 
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• Observation forcing uncertainty is high at monthly timescale, which eventuates in high 428 

disparities in hydrologic fluxes and drought characteristics. 429 

• The N15 simulations indicate higher temperature and evapotranspiration and lower SWE 430 

than the L13 data. The difference can be as high as 6°C in monthly low temperatures and 431 

150mm for monthly precipitation. 432 

• A -3% decrease per decade is found for annual SWE over the PNW. Two major SWE 433 

suppliers of the region are the western Cascades and the northern Rockies, and PNW 434 

shows to be more sensitive to SWE variations of the latter. 435 

• The L13 indicates higher drought extent than N15 simulations in JFM and OND. The 436 

long-term drought extent indicates an increasing trend in JFM for most cases. 437 

• Focusing on the agricultural areas of southern Idaho, precipitation and top-layer soil 438 

moisture indicate a decreasing trend for the past 30 years, causing about 7% decrease per 439 

decade for the net moisture of the region. 440 
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Table 1. Summary of the characteristics of the gridded observation datasets utilized in this study; modified from Newman et al. (2015) 

and Henn et al. (2017). 

Product 
Spatial 

resolution 

Temporal 

resolution 
Variables used 

Ensemble 

members used 

Precipitation data 

sources 

Interpolation 

method 
Reference 

L13 1/16° (~6 km) 
Daily, 

1950-2013 

Prec. Tmax, Tmin, 

Wind 
1 NWS COOP 

Inverse 

distance 

Livneh et al. 

(2013) 

N15 1/8° (~12 km) 
Daily, 

1980-2012 
Prec. Tmax, Tmin 

100 + Ensemble 

mean 

NWS COOP, NRCS 

SNOTEL, COCORAHS 

(GHCN-D) 

Probabilistic 
Newman et al. 

(2015) 

 




